Carbonate-rich melts in the oceanic low-velocity zone and deep mantle
نویسنده
چکیده
Deep extensions of low seismic velocities in the mantle beneath volcanic centers are commonly attributed to high temperatures and have been used as a possible characteristic of hot plumes originating at the core-mantle boundary. To address this issue, we examine the effect of volatiles on melting to determine if regions of low seismic velocities may also be interpreted as regions of melting without elevated temperatures. We find that for the very small amounts of H2O in the oceanic mantle, the effect on solidus temperatures is a reduction of at most ~13 °C, which can be neglected. In contrast, even the smallest amount of carbonate reduces solidus temperatures more than 300 °C at pressures greater than 1.9 GPa. The close match between detailed seismic imaging of the upper boundary of the low-velocity zone on the East Pacific Rise and the sharp temperature decrease for the carbonated lherzolite solidus at ~1.9 GPa supports earlier suggestions that the low-velocity zone (~70–150 km depth) is caused by melting due to the presence of carbonate. For locally elevated concentrations of carbonate subducted into the mantle along with oceanic crust, melting of the resulting carbonated lherzolite and carbonated eclogite could also occur at greater depths, possibly into the lower mantle, without elevated temperatures. Thus seismic imaging of deep low-velocity regions may reveal the locations of old subducted crust rather than hot plumes.
منابع مشابه
Mantle Rocks and Diamond-Associated Phases: Role in Diamond Origin
The components of rock-forming and accessory minerals of the upper mantle, transition zone and lower mantle rocks have been involved into the processes of diamond genesis. Through their dissolving in primary carbonate melts, the mantle minerals have turned into components of the parental silicate-(±oxide)carbonate-carbon melts-solutions for diamonds and co-crystallized paragenetic minerals. The...
متن کاملMantle Rocks and Diamond-Associated Phases: Role in Diamond Origin
The components of rock-forming and accessory minerals of the upper mantle, transition zone and lower mantle rocks have been involved into the processes of diamond genesis. Through their dissolving in primary carbonate melts, the mantle minerals have turned into components of the parental silicate-(±oxide)carbonate-carbon melts-solutions for diamonds and co-crystallized paragenetic minerals. The...
متن کاملMantle Rocks and Diamond-Associated Phases: Role in Diamond Origin
The components of rock-forming and accessory minerals of the upper mantle, transition zone and lower mantle rocks have been involved into the processes of diamond genesis. Through their dissolving in primary carbonate melts, the mantle minerals have turned into components of the parental silicate-(±oxide)carbonate-carbon melts-solutions for diamonds and co-crystallized paragenetic minerals. The...
متن کاملUltralow viscosity of carbonate melts at high pressures.
Knowledge of the occurrence and mobility of carbonate-rich melts in the Earth's mantle is important for understanding the deep carbon cycle and related geochemical and geophysical processes. However, our understanding of the mobility of carbonate-rich melts remains poor. Here we report viscosities of carbonate melts up to 6.2 GPa using a newly developed technique of ultrafast synchrotron X-ray ...
متن کاملژئوشیمی رادیو ایزوتوپهای Rb–Sr و Sm–Nd و پتروژنز تودههای نفوذی مرتبط با کانیسازی مس پورفیری غنی از طلای منطقه اکتشافی ماهرآباد (شمال هنیچ)، شرق ایران
The Maherabad gold-rich porphyry copper prospect area is located in the eastern part of Lut block, east of Iran. This is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. Fifteen mineralization-related intrusive rocks range (Middle Eocene 39 Ma) in composition from diorite to monzonite have been distinguished. Monzonitic porphyries had major role in Cu-Au mineraliza...
متن کامل